On Matrix Polynomials with Real Roots

نویسندگان

  • Leonid Gurvits
  • Leiba Rodman
چکیده

It is proved that the roots of combinations of matrix polynomials with real roots can be recast as eigenvalues of combinations of real symmetric matrices, under certain hypotheses. The proof is based on recent solution of the Lax conjecture. Several applications and corollaries, in particular concerning hyperbolic matrix polynomials, are presented.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On Classifications of Random Polynomials

 Let $ a_0 (omega), a_1 (omega), a_2 (omega), dots, a_n (omega)$ be a sequence of independent random variables defined on a fixed probability space $(Omega, Pr, A)$. There are many known results for the expected number of real zeros of a polynomial $ a_0 (omega) psi_0(x)+ a_1 (omega)psi_1 (x)+, a_2 (omega)psi_2 (x)+...

متن کامل

Real Polynomial Root-Finding by Means of Matrix and Polynomial Iterations

Univariate polynomial root-finding is a classical subject, still important for modern computing. Frequently one seeks just the real roots of a polynomial with real coefficients. They can be approximated at a low computational cost if the polynomial has no nonreal roots, but typically nonreal roots are much more numerous than the real ones. The subject of devising efficient real root-finders has...

متن کامل

On a Sturm Sequence of Polynomials for Unitary Hessenberg Matrices

Unitary matrices have a rich mathematicalstructure which is closely analogous to real symmetric matrices. For real symmetric matrices this structure can be exploited to develop very eecient numerical algorithms and for some of these algorithms unitary analogues are known. Here we present a unitary analogue of the bisection method for symmetric tridiagonal matrices. Recently Delsarte and Genin i...

متن کامل

Differentiation Evens out Zero Spacings

Abstract. Suppose f(x) is a polynomial with all of its roots on the real line. We show that the roots of f (x) are more evenly spaced than the roots of f(x). The same holds for polynomials with all their zeros on a circle, as well as an entire function of order 1 with all its zeros on a line. Applications are given to the Riemann zeta-function and its connection to random matrix polynomials. We...

متن کامل

Novel Approach to Real Polynomial Root-finding and Matrix Eigen-solving

Univariate polynomial root-finding is both classical and important for modern computing. Frequently one seeks just the real roots of a polynomial with real coefficients. They can be approximated at a low computational cost if the polynomial has no nonreal roots, but typically nonreal roots are much more numerous than the real ones. We dramatically accelerate the known algorithms in this case by...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • SIAM J. Matrix Analysis Applications

دوره 26  شماره 

صفحات  -

تاریخ انتشار 2005